Submit Manuscript  

Article Details

Design of Cellulose Derivative and Alginate based Smart Polymers to Develop Stomach Specific Floating Drug Delivery System


Vikrant Sharma* and Jogindera Devi   Pages 1 - 21 ( 21 )


Background: Polysaccharide based gastro-retentive drug delivery systems (GRDDSs) can retain in the gastric fluid of stomach for longer time and release entrapped drug in controlled and localized manner, which can ensure optimal drug concentration at the site of action with improved bioavailability and reduced side effects of acid suppressive drugs like ranitidine.

Objective: The objective of present study was to design smart polymers for gastro-retentive drug delivery of ranitidine through ionic-gelation of carboxymethyl cellulose (CMC) and sodium alginate (ALG).

Methods: The optimal reaction conditions for synthesis of beads were evaluated by varying reaction parameters during synthesis and were obtained as [CMC] = 1.5% (w/v), [ALG] = 0.5% (w/v) and [CaCl2] = 0.1 M with maximum equilibrium swelling ratio (2922.50±0.90)%. The drug loading was carried out by simultaneous and swelling equilibrium methods. Beads were characterized by SEM, PXRD, FTIR, TGA, bead size and swelling studies.

Results: Increase in Ca2+ ions and ALG concentration resulted in decrease in swelling capacity and increase in bead size. Beads got collapsed in phosphate buffer solution and swelling had been occurred through non-Fickian diffusion mechanism. Floating beads with (51.05±0.25)% entrapment efficiency for simultaneous drug loading method exhibited Fickian diffusion mechanism and best fitted in Higuchi model. The diffusion coefficient and initial rate of drug release in simulated gastric fluid demonstrated swelling controlled gastro-retentive release of ranitidine.

Conclusion: These smart polymeric beads have potential to use as a promising candidate for the design of GRDDSs meant for the treatment of gastric ulceration and gastro-oesophageal reflux disease.


Stomach specific drug delivery, Smart polymers, Floating beads, Ranitidine, Fickian diffusion


Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi (H.P.)-174103, Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi (H.P.)-174103

Read Full-Text article